AFRL-IF-RS-TR-2001-242
Final Technical Report
November 2001

¢

K |
N " S
a5

REAL TIME DYNAMIC LANGUAGES

iRobot Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D900

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20020308 042

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-242 has been reviewed and is approved for publication.

APPROVED:])U: WNDW. c;;/uu;fj

DANIEL E. DASKIEWICH
Project Engineer

FOR THE DIRECTOR: é

MICHAEL TALBERT, Maj., USAF, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned. '

REAL TIME DYNAMIC LANGUAGES

Polly Pook, John Aspinall,
Gill Pratt, Rodney Brooks,
and Arturio Arsenio

Contractor: iRobot Corporation

Contract Number: F30602-96-C-0280

Effective Date of Contract: 26 August 1996

Contract Expiration Date: 29 December 2000

Short Title of Work: Real Time Dynamic Languages
Period of Work Covered: Aug 96 - Dec 00

Principal Investigator: Polly Pook
Phone: (617) 629-0055
AFRL Project Engineer: Daniel E. Daskiewich
Phone: (315) 330-7731

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Daniel E. Daskiewich, AFRL/IFTB, 525 Brooks Road, Rome, NY.

e |

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arfington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washingten, DC 20503.

™. AGENCY USE ONLY [Leave biank] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED
NOVEMBER 2001 Final Aug 96 - Dec 00
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
REAL TIME DYNAMIC LANGUAGES C - F30602-96-C-0280
PE - 62702F
PR - D900
6. AUTHORI(S] TA - 01
Polly Pook, John Aspinall, Gill Pratt, Rodney Brooks, and Arturio Arsenio WU - 01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
iRobot Corporation REPORT NUMBER
22 McGrath Highway
Twin City Office Center, Suite #6 N/A
Somerville Massachusetts 02143
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTB AGENCY REPORT NUMBER
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505 AFRL-IF-RS-TR-2001-242

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Daniel E. Daskiewich/IFTB/(315) 330-7731

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)
A behavioral programming approach to adaptive autonomous control had been completed. An advanced hexapedal crab-like

robot, Ariel, was built in order to investigate methods of robotic self-adaption. As a result of this program, Ariel is able to
negotiate the harsh surfzone using fully autonomous distributed gait control. Advancements include the implementation of a
high-level controller that recognizes impending unstable etrajectories in the phase space of the gait, and adapts accordingly.
Separately, a primate-like head was developed for multi-layer visual control of bipedal and quadrapedal robot navigation.
The software architecture incorporates cognitive motivations, selective attention, and a suite of reflexive visual routines. the
real-time adaptive software architecture developed under this effort is generically applicable to and DoD embedded real-time
system.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Real Time Software Architecture, Adaptive Software, Autonomous Robots

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (gRev. 2-89) (EG}
Prescribed by ANSI Std. 239.18
Designed using Pesform Pro, WHS/DIOR, Oct 94

Table of Contents

Section . EXECULIVE SUMMATYocivviereerirerrrernieerenessosneeessesseeseseesesaessseressacsessrsensesesnessnsmsssssssasssanssses 1
I.1 CLIN QO3 - SAFER ...t rms st et e seteeas e e e e ssessssteebsenssharassesatssabassnssssessbonnssaas 1
1.2 CLIN 0004 — Active Vision Head..........cccooiieiiiiiiiiecinereerecneeete it satsssess e st essesnesnes 2

Section II. CLIN 0003: A Behavioral Programming Approach to Adaptive Autonomous Control

(SAFER) oot e eeete s e e e s e ra et st e e e st e s et e s e e bessas e st e Rt ettt de e et s an e b d et e e e s st e e bt o baebe 3
IL.1 Ariel 2 Hardware OVETVIBW.......cccerveriieierierteeeeeeenreesenesseeessstsstssressassssessssssassrsesssssssssnsonns 4

II.1.1 Mechanical ATChIfECIUTEccoveeeitirrieeeeriteee ettt sst e saesssa s b s sonnes 4
I1.1.2 Electrical ATCRItECIUTR.....c.vieevieeereeirenreereeeitrsernes e e srateeseteeeesenre s e e s sbesmeeseneesseessassessansanss 6
1.2 Software INFTastTUCTUTEccverevverrrireriernreeeeretee e eeiresete st ee et sseeee e eessaessmnbesabesosasesaensssssssns 10
I1.2.1 Behavioral Programming and Subsumption ArcChiteCturescc.cccecvivrivenviinniiinicnnniennns 10
IL2.2 L/MARS ettt ettt sttt s se s b a e b e st st st nesane st e sbe s e sanannes 11
I1.2.3 RTEMS ..ttt e e ereeee e s eeesaesbt s st e e b s e e e s b esa e b e sa e sabesaeanessssassnesssnnan 11
I1.2.4 Mirror Interprocessor Communications SubSITateceveerveeerereeireerirenrrrecnietnersnseeesies e 11
I1.3 Adaptive Gait Control (or Making a Crab Think like a Stick-InSect).......c.ccevvrvienrniiininnnnnnne 13
IL3.1 BAaCKZIOUNG....ccocoveiciiecieieniieieenreesintesireesseesssnsscseassnsesassasestacaneesonnessonssesaessneessmenessaessnsoons 13
I1.3.2 Overview of the Stick Insect CONtrollErc.ccocerirrieeriiicrire e 14
I1.3.3 Using the Stick Insect Controller 0n ATi€l.........cccccrvirvirvinirrienennicnniiiensreiesseeees 15
I1.3.4 The Stick-Insect Controller as a Dynamic SyStem.......eeveeeierrviieireeiciniecicrenecrerecneennes 15
I1.4 RESUILS ...ceveieeeeieeieee e e et e e eerre e e ae s e s en s ae s beste s st e b e saeeesaeessenseesaeeenesenessstennssoneeoruesasassssns 25
I1.4.1 Straight Line MOTIOMccoiiriieiieneieinrcetcctecenttsteist st ssreerressse st s ressnsssnssasen 25
I1.4.2 TUuming MOION......cciceerieeeeeieececerieeierreeeeeeesenessesereseeestassesesesessesasesaeeeasasesaseanessosasnesses 26
ILS COMCIUSIONS ... e ceer et et et e te e s e e et e et tebe st e st et eese s aeesaeeenesenesostensasabesaessaanebstsrasen 26
11.6 RETETEICES ...cuviireerenrieetieierericrnresiaeesetestesersassneasseessasesnnessseessusessetesssessanteeseseenseesantessneesssereses 27

Section III. CLIN 0004: Adding an Active Vision Head to the M4 Robot..........ccoovvrvviiivincnnnnins 28
IIL1 INEFOQUCTION ..coivriitiieiierinriecreeveeseseesur e eeeesscaeesressesaese s s sse s nnteesatesasessameessetaesseessnnessenassnessines 28
IM1.2 Body/Head INEEZIationccccvreierieriieeicrnecrersrsessessesrssssssesssstessasessstesensesensesaseessssassssessaneses 29
IH.3 Hardware ATCRItECIUTEccoiviieiiee e rt et e et e et e esees e e st e sae e e e e sateeneeensesensaneas 30

H1.3.1 Design and Manufacturing..........ccccuveveireiinienienininensieccnececieesnssssstsessessesssssessessees 31
III.4 Software ATCRILECIUTE.coctiiiieiieieeierieetee ettt et ce et ee et e see e e st s e s sanesnbesae s raenasaseesn 37

Table of Figures

Figure 1: Ariel 1, a crab-like robot for the SUTfZONE.ceiimeiiniiinncriii e 3
Figure 2: The mechanical architecture of ATIEL......c.ccovriiiiiiiiini e 4
Figure 3: One of Ariel’s siX identiCal I8gS.ccovvmimiirmmiemininiccinein s 5
Figure 4: Cutaway view of Ariel foot ShOWING PreSSUe SENSOT ...cvusimriucurruniimsiimsmiriisssi s 6
Figure 5: The computational architecture of ATIEL.cvrviiiiiiniiiisiciii e 7
Figure 6: A comparison of FarNet and COTS NEIWOTKS.vovimiiimmicniniciciiniisnss s 9
Figure 7: The software architeCture of ATIELcovvviiiiiiniiiiini e 12
Figure 8: Leg geometry for @ heXapod.cvueurvueiimiiiiniiisiisisi st 13
Figure 9: The individual 16g CYCIE.vvvriiiriciieemiiii s e 14
Figure 10: The 2-Leg Phase SPACEeueeueviimiememmiiisinireis it s 16
Figure 11: 2 Leg System with 1 INfIUENCE ...c.ovuvemmimiiiiiiiiinititisiii e 17
Figure 12: 2-Leg System with INfIUENCE S..c.viuevcmiiiiiimiiiiiiiici e 17
Figure 13: Limiting Behavior for INfIUENCE 5.......coviiiiiiiiiniciiicii e 18
Figure 14: Other results for 2 Leg SYSIEMS.....c.ciuiiiimiiemiiemiss it 18
Figure 15: Alternative Phase Space Representation: Unfolded, Uniform Time Spacing for a Two-

OSCHIALOT SYSLEIM....cuvcevteeraiaiacaescrereri sttt se s a s s E bbb 19
Figure 16: 3-leg System shown as a 3-torus unfolded as a CUDE et eeeteeette e et eeee e eeesns e bas s nnansne s 20
FAGUIE 17: GOOU tTAJECOTY. ..o curuererreratassrstieseseuetescacssasa b s bt 20
Figure 18. The linear controller (one per joint — 12 total)ooieiriricriiiiiiiiiis e 22
FAGUIE 19: TRE tTAJECIOTY. c..ceovururrunrssriesseisnrserserses st sae s s e 23
Figure 20: Upper Level CONIOL........oouiiiiriiciiicmii ittt 24
Figure 21: Real world data: Leg Position for Straight MOtONc.ooveiiiniiniiisciinsissce s 26

Figure 22. Macaco - M4/M2 Project. Rodney Brooks and Artur Arsenio. Primary Sponsor: Air Force
Aerospace Research — OSR. Secondary sponsor: iRobot (IS Robotics) contract number F30602-96-

Co0280. o oeeeeee oo reeseaseeseeaaseeaasesssaeatssastaasasasea e e teastra bt eo b e e e R s e bR e RS e e eSS e et b e et e 28
Figure 23: M4/M2 Head Hardware Organizationcoeeieriisssencciimcmninnisss s 31
Figure 24: M4 (dog-like head) deSign......coceveuicmiimiinimiiii e 32
Figure 25: M4 SOIA MOGEL.ccoviiiiriiniecieieieiet ettt 32

Figure 26: M2 (primate like head) design, with four parts replaced, and a stereolithography artwork. Top:
Chimpanzee face anatomy. Middle: Primate head skeleton (four parts replaced). Down: Final

PIAMALE AESIZIL. 1.cvcverrcmsisirisrsisessrieisssts ettt 33
Figure 27: M4/M2 COMPONENLS......uovruersrssrsssstsersersiastssssaesissss s ss st sttt e 34
Figure 28: Active binocular tracking (17 VETSION). 1.vreereverieereeneeininier et ettt ettt 39
Figure 29: Smooth pursuit tested 0N COZ......ccvemeiimimimimiiriiiirtss s 39
Figure 30: Approaching postures (curiosity behaviors - left), and object tracking (right).cccccoencenine 40

ii

Sectionl. Executive Summary

The Real-Time Dynamic Languages contract consists of three separable efforts:

1. Evolutionary Design of Complex Systems (EDCS) (CLINs 0001 and 0002).
2. A Behavioral Programming Approach to Adaptive Autonomous Control (SAFER) (CLIN 0003).
3. Adding an Active Vision Head to the M4 Robot (CLIN 0004).

The first effort, EDCS, was completed and a final report submitted previously. This document includes
the final reports for each of the latter two efforts, SAFER and Active Vision for the M4 Robot.

.1 CLIN 0003 - SAFER

The goal of the SAFER program is to explore roles and methods for self-adaptive software. Robotics is
an ideal field for such exploration, as robots are independent entities that must adapt to changes in their
environment (or internal failures) if they are to perform for any practical duration. For the SAFER
program, we have adapted the amphibious Ariel robot. Ariel is modeled on the crab and is a proof-of-
concept for mine remediation on the beach and in the surf-zone. On six legs, Ariel must be able to
traverse sand, underwater silt, rocks and pebbles, while withstanding crashing waves, undertows and
water currents. Thus, Ariel has particular need for self-adaptive gait control.

An initial prototype of Ariel was built under a grant from the Office of Naval Research. The SAFER
program has funded:
¢ the development of a second Ariel prototype;
e the evaluation of a COTS networking system for robots, Echelon LONWorks™.
e the application of an innovative, proprietary, real-time networking system, FarNet™.
e the application and extension of the Cruse “stick insect model” of distributed gaited motion on
Ariel
e the development of a novel high-level controller, built on top of the Cruse model, for self-
adaptation.

The results are promising for autonomous robots in extremely taxing conditions. The new Ariel
performed a walking pattern search in the North Atlantic surfzone (Revere Beach in Revere,
Massachusetts), at the Coastal Systems Service in Panama City, Florida (at a demonstration sponsored by
Boeing Aerospace), and at Monterey Bay for National Geographic. Ariel I is able to withstand pressures
at a minimum of 25 feet of depth, and carry a payload of 6 kg.

The COTS Echelon LONWorks™ networking system was found to be not up to the task of reactive robot
control, contrary to marketing claims. The Echelon system lacks predictable latencies, rendering poor
performance for a distributed control models. It also has generally slow messaging that prevents good
centralized control. Thus neither a distributed controller, such as the Cruse stick insect model, nor a
Centralized Pattern Generator could be built on top of LONWorks™ for hexahedral walking.

We replaced Echelon with the just-developed proprietary iRobot FarNet™ system with great success. The
system has low, predictable latencies and high bandwidth. Thanks to the SAFER program, we were able
to perform final debugging on the system and turn FarNet™ into a commercial success. FarNet™ is now
included in nearly all iRobot robot sales.

The Cruse distributed model of gait control was implemented on Ariel and critically extended to skidding
and turning. It became apparent that the model could only perform reactive functions with slow

convergence on to a stable gait after perturbation or failure. What is required is a higher-level controller
that can perform two key functions. The first is to recognizes unstable trajectories and effectively knock
the controller back into a limit cycle. This is roughly akin to our ability to catch our step instantly after
stumbling, rather than gradually change the step in small successive increments until stable again. The
second role is to recognize the need for a change in gait, such as when the terrain changes.

We developed two models for higher level adaptive control. The first looks to return map analysis for
recognition of trajectories as they become unstable. The second is to perform clustering on sensory
signals to recognize terrain change. The first has promising results; the second, at this point, is a thought
model and so not presented here. Both warrant future work.

.2 CLIN 0004 — Active Vision Head

The MIT AI Lab, in a subcontract to iRobot, developed a head (eyes and neck) for bipedal and
quadrapedal robots along with a suite of visual routines. The physical design is inspired by primates and
canines and is called, alternately, the Macao (for the primate), the M2 (a two-legged robot) or the M4 (a

four-legged robot) head.

Macaco is a 7DOF small and light robotic head, with four color CMOS cameras and one thermal camera.
This head will be incorporated into a moving body. The merging of social competencies with navigation
capabilities requires an architecture that integrates all the modules coherently, such that Macaco is given a
personality demarcated by curiosity and a wish of interacting with people, together with a strong instinct

for safety.

Macaco was designed for navigation in unstructured environments. Thus, its vision system must comprise
methods of assessing the constantly changing terrain. Navigation for obstacles and potentially treacherous
landscape avoidance, slope detection, and gaze stabilization are all requisites for such competence.
Furthermore, in order to be a convincing social participant, the vision system must also allow for person
detection and inference of human gaze direction. All of these vision modules must also be accessible to
each other and concurrent with other sensor input from the rest of the body. The software performs three
parallel functions. The function of the top layer is cognitive decision-making. The second layer attends to
events selected by the cognitive layer. The third layer performs reflexive actions, such as gaze-tracking

and smooth pursuit

The work continues beyond the scope of this contract. The final report is thus cast in ongoing terms.

Sectionll. CLIN 0003: A Behavioral Programming
Approach to Adaptive Autonomous Control

(SAFER)

A behavioral approach to robot control software can add a degree of robustness to environmental
complexity that is difficulty to achieve using more static controller-design methods. Self-adaptive
software techniques can add a similar layer of robustness along with compact representation. We have
taken a behavioral approach to self-adaptive software to provide compact, robust, and decentralized
control for a walking robot designed for operation in quite dynamic and unpredictable environments.

—

‘..l‘v. iz

). ‘% A ".E;:t'«.«}‘;\.-i A I ;_:;: L

Figure 1: Ariel 1, a crab-like robot for the surfzone.

Ariel is a six-legged autonomous underwater robot designed for mine remediation in the surf zone. This
existing platform had several different walking controllers but suffered from a lack of robustness and
responsiveness in the complex dynamics of the surf zone environment. The key goal has been the
preservation of the real-time responsiveness so necessary for control in the real world while enabling
smarter, more adaptive behaviors to provide a robust yet simple control over the broad range of
anticipated environmental contexts. The need for responsiveness makes it unacceptable to stop the
robot’s locomotion in order to perform small modifications to the walking controller. This means that
any adaptation mechanism must work on an active set of lower-level behaviors.

Our starting point for the development of a decentralized walking controller was an existing controller for
stick-insect-like gaits. This has been adapted to the novel situation of crab-like, sideways motion to
provide additional stability in the complex dynamics of the surf zone. An additional walking controller
was also developed to maintain posture during turn-in-place maneuvers, where the high degree of
slippage imposes additional dynamic constraints.

This behavioral approach to the walking controllers also provides the opportunity for self-adaptation at
higher levels. We have taken two approaches: extracting simplified predictive models of the walking
controllers for use at the higher level and generation of additional contextual knowledge of the
environment through better exploitation of sensory assets. Additional analysis is aimed at quantifying the
cost of decentralized control for the Ariel system.

The ideal (unperturbed by the environment) walking controller can be seen as a simple dynamic system.
The upper layer of software can make short-range predictions about the trajectory of the lower-layer
controller in the configuration space and, in particular, can predict entering undesirable regions of
configuration space with enough time to prevent instabilities. Our intent is for the upper layer to
intervene in a minimal way to alter the behavior of the lower layer. In robot-specific terms, undesirable
regions of the configuration space are when adjacent legs both lift in return stroke at the same time. The
consequence is mechanical instability and stumbling in the gait. Minimal intervention consists of slowing
the gait or commanding a leg to enter return stroke early. As mentioned above, brute force intervention
such as freezing the motion by interrupting the controller is contrary to our goals. Results indicate
increased robustness in the walking controller for both straight-line and turning maneuvers.

The second approach to enabling higher-layer monitoring is the extraction of additional knowledge from
sensory data that is used by the lower layer. This information may consist of correlations, clusters, or
other long-time-scale measurements. Our ultimate intent is to use this information to modifying the lower
layer in response to environmental changes. We have achieved some success in building the foundations,
in both software and hardware, for generating information that can be more effectively exploited by the
higher layers through adaptation of the lower-layer walking controllers. In robot-specific terms, the lower
layer controllers use force data from the six foot-sensors only to a limited extent. The walking controller
is interested only in a contact/no contact decision. However, much more information is available in both
time and force-resolution. If we could, for instance, detect whether Ariel were walking on sand or a hard
bottom, we could modify gait parameters accordingly. With the present advances in foot pressure sensors,
compass placement, and software infrastructure, the information now in use by the low-level walking
controllers can be more effectively exploited in future versions of the system. Preliminary, qualitative
results indicate that surface compliance can be recognized, paving the way for further enhancements in
adaptive high-level control for Ariel.

II.1 Ariel 2 Hardware Overview

Figure 2: The mechanical architecture of Ariel.

I.1.1 Mechanical Architecture

Six leg mounts surround a central watertight housing. The main structural members run longitudinally
alongside the housing double as battery containers. The outrigger arms at each end support two separate
housings for compass/inclinometers. Each two degree-of-freedom leg measures 15 ¢m from hip to knee,

and 15 cm from knee to foot. Cable drives run from two motors mounted adjacent to each other near the
hip joint, to their respective joints. Each of Ariel’s 12 motors is a 20-watt, brushed DC motor. The motor
gearhead is a 236:1 multi-stage planetary gearbox. The robot weighs approximately 11 kg on land, and 5
kg fully submerged.

Figure 3: One of Ariel’s six identical legs.

The two degree-of-freedom leg (shown in
Figure 3) is activated by motors contained in
individually watertight housings. Each motor
is a 20-watt, DC, brushed, gearhead motor.
Cable drives connect each motor’s output shaft
to its corresponding joint. The hip-to-knee
distance is 15 cm; the knee-to-foot distance is
approximately the same.

The leg design is one of the pieces of Ariel
that has remained virtually unchanged since
the original Ariel | design. The foot, however,
is a new addition and is described below.

Force-Sensitive Foot

Previous versions of Ariel have employed a binary (contact/no-contact) foot switch to sense contact with
the ground. While simple to interpret, the switch suffered from both mechanical and software problems.
On the mechanical side, the switch was prone to fouling by sand or other debris from the surface on
which Ariel was walking. On the software side, the force necessary to activate the switch was, by
necessity, a fixed quantity. Since Ariel effectively weighs more than twice as much on land as it does
underwater, the single force value for a threshold between contact and no contact was t00 restrictive.

We wanted a new foot-contact sensor satisfying the following design criteria:
o Robust against fouling by mud, sand, and other debris.
e Provide as much information about contact as possible, within constraints of the first criterion.

The resulting design is shown in Figure 4. A flexible sealed envelope assures that debris will not foul the
operation of any mechanical contact. The foot is filled with distilled water. A scalar pressure sensor
inside the envelope provides a measure of the force being exerted on the foot. The water fill and the
differential pressure sensing combine to compensate for volume changes due to variations in the ambient
external pressure. The use of scalar pressure (as opposed to resolving the force into directional
components) is a compromise on the second design criterion, in order to achieve a simple and robust
solution to the first.

The foot is cast from a two-part silicone rubber compound. The collar is made from aluminum and the
foot is sealed to the collar using the two grooves and a wire tie.

Amplified by an op-amp in lower leg, and passing to an A/D input on the motor board, the pressure
sensor provides 8-9 bits of force resolution.

Figure 4: Cutaway view of Ariel foot showing pressure sensor

Extended Frame for Compasses

Measuring the local magnetic field, in order to get a compass heading, is a necessity for Ariel to walk a
straight line as part of a search pattern. Previous experience with an internally mounted compass was
unsatisfactory. Stray, fixed magnetic fields, from the permanent magnets in the motors, made a
calibration procedure mandatory. Transient, magnetic fields (most likely from motor currents) were also
present; these could not be “calibrated out”. To address these issues, two compasses were mounted on
arms extending from the central chassis. The fall-off of the magnetic field from the motors and other
electronics dictated the length of these arms. By using a symmetrical arrangement, differential
measurements are also available, improving robustness through redundancy.

ll.1.2 Electrical Architecture

Figure 5 is a block diagram of Ariel’s major components, and their interconnection. Ariel’s 12 motors are
controlled from four motor control boards. Each board controls three motors, communicating via a
proprietary ring network to the control processor. Two 16-bit processors provide computational power
(described below under software). Ariel carries two compass/inclinometers at the end of outrigger arms.
The arms isolate the compass measurements from large transient currents to the motors. The
compass/inclinometers are commercial off-the-shelf models. A pressure sensor is surface mounted on top
of the chassis and used to prevent Ariel from walking beyond its depth limit (8 m.).

Batteries

Ariel is powered from two series-connected battery packs. Each battery pack contains 11 NiCd cells for a
nominal system voltage of 26.4 volts. Fully charged, they start at about 30 volts in practice. The current
NiCd cells give it a charge capacity of two amp hours; the use of nickel-metal-hydride (NmH) batteries
would increase the charge capacity to approximately three amp hours. Battery lifetime, in use, varies with
the various environmental conditions that affect the load on the motors, but typically runs from 30

minutes to an hour.

IS ROBOTICS

Computational Architecture

o Pressure Metal Compass/ Leak
Mission Sensors l Semsor l | Detectors] ek Detector

Serfal SPl
N AD

10 Board

!

4—>I

Mission Behaviors Mini-332
Gait Parameters t Serial Mirror

rFLEX
Status

Controller .
Pulse widths (FARNet Master) (lumodfr.coums.
limit switches)

3 Axis ——’ Leg Motors

Gait & Posture Control MMD | g g Limit Switches

FARNet
\ / Reflexive Sensors

3 Axis l

3 Axis
I MMD]"'—’l MMD

Figure 5: The computational architecture of Ariel.

LONWorks™ Network

Ariel I was controlled with a MC68332, six MCH6811, and twelve PICs. While this configuration served
to evolve a fast prototype, it provided insufficient processing power for advanced software development
and a cabling nightmare. Consequently, we looked to a networked computational model for Ariel II, that
would provide fast, modular, distributed computation.

We initially chose to use the commercially available Echelon LONWorks™ system. The on-board
computational network was distributed across a 16Mhz MC68332 processor and a network of “neuron”
microcontrollers using the LONWorks™ protocol. Each Echelon neuron (a 10MHz MC143150 or
MC143120) provides dedicated local processing to the sensing and actuation devices while the faster
68332 processor coordinates action and communicates with the OCU. The central and dedicated
processors are arranged along a daisy-chain backbone and communicate using LONWorks™’ 7-layer
protocol. With this architecture, individual sensors, activators, and boards become line-replaceable units,
facilitating reconfiguration as well as debug and repair of malfunctioning robots. The hardware,
moreover, reflects the distributed software framework of behaviors wired together.

iRobot wrote all of the motor and sensing drivers in Neuron C, a language for the Echelon LONWorks™
distributed processing system. The LON (Local Operating Network) is a distribution of special Motorola
microcontrollers, called Neurons, with a full communications protocol stack. Each Neuron can be
dedicated to a mechanical or electrical device, including robot sensors, actuators and other
microprocessors, such as the Motorola 68332 or Pentium. Thus, the computational requirements of
controlling the low-level robot hardware can be off-loaded from a central processor and handled
individually by the dedicated Neurons. The Neurons are arranged on a bus for which LONWorks™
transparently handles all communication, creating a seamless and modular system.

LONWorks™ Results

The selection of LONWorks™ was motivated by the desire to distribute processing and the lack of a
suitable distributed network for small autonomous robots. The integration of LONWorks™ with our
existing MC68332 embedded robot controller was a significant effort. ~The results were poor.
LONWorks™, despite sales claims, does not exhibit predictable latencies and their duration is typically a
long 15 msec. While the advertised bandwidth is 1.2 Mbitas/sec, in actuality the system throughput was
0.5Mbits/sec once communication overhead was included. This created an unworkable network for
distributed gait control, wherein motor controllers depend on real-time reporting from neighboring

controllers.

Concurrently, iRobot had been developing a proprietary computational network to address the needs of
fast, predictable, distributed networks for robots. The result, called FarNet™, far outstripped
commercially available systems. Though in a prototype stage, we chose to replace LONWorks™ with

FarNet™,

FarNet™ Network

FarNet is iRobot’s proprietary robot component interconnection technology. It was designed to provide
fast communication with low and predictable latency among robot components. FarNet is an arbitrated
ring, for predictable latency. Nodes are bit-serial for minimal delay, and are implemented using FPGA
technology. The network bit rate is 16Mbits per second. By restricting the maximum packet size, we can
reduce typical latencies to tens of microseconds. The FarNet ring is hardwired on Ariel because of space
considerations; we expect most typical implementations to use a hub for reliability (a hub can “splice”
individual nodes in and out of the ring). At the packet level, FarNet protocols admit either single-master
or multiple-master operations. Single-master networks provide for less latency while multiple-master
networks permit more distributed control.

FarNet™ Results

FarNet performed superbly, although the implementation of the newly created Beta version required great
effort. The network incorporates a suite of motor controllers and sensors, with a special software
communication “mirror” between the FarNet Coldfire processor and the MC68332 embedded robot
controller. Details are sketched throughout below.

g 1S ROBOTICS

State-of-the-Art Embedded Networks

.
(Estimated!)
FARnet LON CAN 1EEE-1394 USB
(IS Robotics) (Echelon) (fire-wire)
Type Fast arbitrated ring Broadcast Broadcast Tree Tree
Throughput (Mbits/s)
Raw 16 1.2 1 400 12
Actual 10-12 0.5 0.5 200
Reliable delivery
with minimal YES NO YES NO
overhead
Latency 10usec Msec 100 psec Msec Msec
(unpredictable)
Fault-tolerance? YES NO NO Partial Partial
Size limits
Cable length 100m Big Big 5m 5m
of nodes 100 Big Big 100
(speed tradeoff) | (speed tradeoff)
Auto-configurable? YES NO NO NO YES

Figure 6: A comparison of FarNet and COTS networks.

Processors

Ariel carries two processors on board. iRobot’s mini rFlex processor provides low-level control (as
described in the software section) to Ariel’s 12 motors. The rFlex processor provides:

Motorola Coldfire chip with 90MHz clock;

16Mbytes of RAM;

2Mbytes of “flash” EEPROM;

2 high speed serial ports;

FarNet interface: bit serial link at 16 Mb/sec implemented in Xilinx Spartan series XCS30 FPGA;
the FPGA is programmable at processor boot time from the nonvolatile memory.

Higher-level software runs on an iRobot mini332 processor. The miniboard provides:
Motorola 68332 processor with a 16 MHz clock;

1Mbytes of RAM;

2Mbytes of “flash” EEPROM;

2 high-speed serial ports, with more available using TPU.

Additional I/O

The IO board supports eight channels for analog to digital conversion and provides four serial ports to
interface between devices and the central processor. An inversion switch mounted on the board signals

the lateral orientation (belly or back side up) of Ariel so that the legs can flip about for locomotion in
either position.

Compass/Inclinometers

As mentioned above under New Mechanical Hardware, Ariel carries two compass/inclinometers at the
end of outrigger arms. The arms isolate the compass measurements from large transient currents to the
motors. The compass/inclinometers are commercial off-the-shelf MicroStrain 3DM models. Each
compass provides a measurement of the local gravity and magnetic field vectors.

Motor drivers

Ariel’s 12 motors are controlled from four motor control boards. Each board controls three motors,
communicating via the FarNet ring network (see above) to the control processor. The specs for each
board are:

e Current capacity: 5A peak, 3A continuous at 24V * 6V (18V to 30V);

FarNet interface: bit serial link at 16 Mb/sec implemented in Xilinx Spartan series XCS30
FPGA;

Three independent channels of 8-bit PWM;

Three channels of quadrature decoding;

Three channels of current sensing;

Power supply voltage sensing and undervoltage lockout;

Shorted motor winding detection and protection;

Ten bits of digital input for limit switches (or other purposes).

Four analog inputs to 10-bit A/D converters.

.2 Software Infrastructure

The overall software architecture is the subsumption architecture described below. As shown in Figure 5,
the electrical architecture of Ariel is distributed between two processors, a 68332 and an rFlex Coldfire.
The rFlex Coldfire is running the RTEMS operating system and features code developed in C for low-
level control. The 68332 mini-processor is running the Venus operating system with L/MARS software
for behavioral control.

1l.2.1 Behavioral Programming and Subsumption Architectures

Autonomous robots provide a challenge to control system design. They are designed to venture into a
world that is dynamic and unpredictable. It is impossible to test all situations that the robot may
encounter. Thus, their controllers cannot depend on complete or precise knowledge of all potential
stimuli.

Behavioral control is a decentralized approach to the architecture of a control system. Control is
distributed among a number of asynchronous modules, or behaviors, each limited in the scope of its
inputs and outputs to a small fraction of the total system state. The organization of a behavioral control
program into layers of competence, where each layer is capable of operating without control from higher
layers, is known as subsumption architecture.

Behavior-controlled systems have been demonstrated to be less compute—intensivé and more robust than
competing centralized approaches. This makes behavior control ideally suited to small mobile robotic
applications where reduction in size and energy consumption dominates the design process.

10

Subsumption architectures are intended to be inherently adaptive. One behavior can suppress another,
allowing a simple structure in which alternative algorithms can reside in different behaviors without
interfering with each other.

The key to adaptability in a subsumption architecture is that high-level redundancy, i.e. the ability to
complete some task or detect some condition by multiple means, does not necessarily imply lower-level
redundancy, i.e. that the different means are simply copies of the same mechanism. For example, a
multiple-legged robot may have different gaits that achieve the goal of walking. However, the individual
legs may not be identical, the different gaits may not employ the same numbers of legs, nor may they
result in a walk with the same speed, efficiency, or stability. Nonetheless, as long as they achieve the
goal of locomotion, a system that adapts to use them will display a more graceful degradation than one
that doesn’t.

11.2.2 L/MARS

The portable Common Lisp subset used to develop the software is based on previous work by iRobot on
L, a Common Lisp subset that currently runs on 68000-based machines. L was carefully designed and
implemented for use in small, embedded processors operating under real-time constraints; it is currently
in use on a number of walking, tracked, and wheeled robots being developed by iRobot.

The memory management system for L has been redesigned, making use of recent research results by the
garbage collection community, particularly in the area of real-time garbage collection. This permits the
relaxation or elimination of certain restrictions on programs imposed by the L language or its previous
implementation.

The process-oriented language is based on previous work by iRobot on MARS (Multiple Agency
Reactivity System). MARS is a system built on top of the multi-threading features of L, and is written
entirely in L. MARS provides mechanisms for defining, creating, and manipulating structured collections
of threads which share parts of a lexical environment in arbitrarily complex ways, along with mechanisms
for adding and removing communication links between these threads.

The development environment is written entirely in Common Lisp, but the graphical user interface and
the serial communications facility for communicating to a target system are both written using
implementation specific extensions provided by Macintosh Common Lisp.

11.2.3 RTEMS

RTEMS is an open source, portable, standards-based real-time executive for C, C++, and Ada95
originally developed by On-Line Applications Research Corporation for the U.S. Army Missile
Command. RTEMS complies with the POSIX and RTEID/ORKID standards. It provides support for
TCP/IP, remote or local thread aware debugging using gdb, and file system support. Basic kernel features
include multitasking, homogeneous and heterogeneous multiprocessor systems, event-driven, priority-
based, preemptive scheduling, optional rate monotonic scheduling, intertask communication and
synchronization, priority inheritance, responsive interrupt management, and dynamic memory allocation.
RTEMS provides a high level of user configurability, and is currently available on a large array of
microprocessors. Access to the RTEMS source code allowed us to make minor modifications tailoring the
real time executive to our specific needs.

11.2.4 Mirror Interprocessor Communications Substrate

The mirror layer implements a “mirroring of variables” model on top of serial streams. Mirroring of
variables (as opposed to remote procedure call, or an event model) was chosen for compatibility with
existing software.

11

The rFlex processor runs the RTEMS real time operating system. Code is developed in the C language
for the linear controller and gait controller levels. The mini332 runs the Venus operating system. Code is
developed in iRobot’s L language, and in MARS, a macro package written in L. The purpose of the
mirror layer is to communicate between various threads of control running on the different processors

shown in Figure 7.

----------------------------- AN NN AN NN NG NN SN YA RN IS AR TN R ONN
v

o
68332 “mini” Mission Arbiter :
S processor -
H Mission Component Behaviors :
Walking and Posture Supervision é
Inversion §

- et

---- * “Mirror” interprocessor communication

Gait Cycle and Stick Insect Controller

nlnnnnun‘

._-g““(;
Sesesnensenenns

oldFire rFlex Linear Controllers

Figure 7: The software architecture of Ariel.

The multiple pieces of software that implement the mirror (.c, .h, and .lisp files) are written from one
interface description shared among several robot projects, thus fulfilling a key requirement of code for the
mirror layer that consistency be maintained between code on the two sides of the inter-processor
connection. The interface description is written in a domain specific embedded language which is read by
a code generator that generates both L code for the mini68332 side and C code for the rFlex Coldfire side
of the communication link. The mirror layer design allows the software to be independent of the
underlying communications medium.

Finite State Machine Language

The Finite State Machine (FSM) language is a Domain Specific Micro-Language embedded in L
and developed under this project. It allows a programmer to express the description of an
augmented finite state machine, with states and transitions clearly delineated from regular L

code.

This FSM language has since been reused by another iRobot commercial project. The FSM is at
the heart of the mission control software of the BoreRat robot. The BoreRat is a first-of-its-kind
untethered device for taking tools and sensors down into oil wells and then back to the surface
again under its own power and control. All other approaches to oil well data gathering and
maintenance currently require spools of wire or coiled tubing to push the devices in and pull

12

them out, with each spool weighing several tons. By eliminating the need for these spools for
some kinds of oil well interventions, we can significantly reduce the cost of these operations and
eliminate the dangerous task of handling this heavy equipment. The BoreRat was first tested at
Baker Hughes' water filled test well in Bossier City, Louisiana. When it returned to the surface
from a depth of 356 ft on March 15, 1999, this was the first time any device had ever come back
up out of an oil well under its own power. As well as being used to control the queues of tasks to
be performed, health monitoring, and robust control to overcome stuck conditions, each of the
low level tasks it knows how to do is also executed as an FSM until just above the PID-based
velocity controllers.

1.3 Adaptive Gait Control (or Making a Crab Think like a Stick-Insect)

One of the primary goals of the SAFER program was to develop a more robust legged locomotion
algorithm for Ariel. A distributed, self-adaptive approach was chosen. The stick-insect walking controller
[Crus95] was modified and extended for the crab-like motion characteristic of the Ariel platform. Crab-
like motion was originally chosen for the Ariel platform for biomimetic reasons: the crab is the most
efficient walker in surf-zone regions.

ﬁ crab-like motion

insect-like motion

neighbor
relations

Figure 8: Leg geometry for a hexapod.

11.3.1 Background

The goal of any legged locomotion controller is to move the legs of a robot in a coordinated fashion to
achieve the following goals:

Mobility: forward progress is made;

Mechanical Stability: the robot doesn’t fall down.

It is usual to define static mechanical stability, as mechanical stability where inertial dynamics play no
part in the motion. Such mechanical stability is achieved by keeping at least three legs on the ground so
that the center of mass falls inside the enclosing polygon of the legs currently in contact.

For a hexapod robot, the above criterion for mechanical stability is equivalent to a simpler description:
No two adjacent legs should leave the ground at the same time. Legs are considered adjacent if they
fall next to each other in a circular ordering, as shown in Figure 8.

It is important to realize that a locomotion controller is more than a specification of the ideal trajectory of
all the legs. The controller must also specify what the legs should do in a non-ideal situation. It must

13

deal robustly with perturbations away from the desired state, as such perturbations are an inevitable
consequence of operating in the real world.

1.3.2 Overview of the Stick Insect Controller

The stick insect controller can be subdivided into:
¢ The trajectory of an individual leg;
¢ Inter-leg coordination.

back forward

—
downy p

v
power a

constant velocity on the power (weight-carrying) stroke, Ypower

i i v
(a different) constant velocity on the return stroke, return
anterior (forward) turnaround point is fixed, "a

posterior (rearward) turnaround point can be varied, x
I)

5 % # £

Figure 9: The individual leg cycle.

Individual leg motion is shown in Figure 9. Each leg executes a cycle consisting of a power stroke from
front (anterior) to back (posterior) of the robot, and a return stroke from back to front. The power stroke
is where the robot’s weight is carried forward with the foot in contact with the ground. The power stroke
maintains a constant velocity from start to end; this is the velocity of the robot over the terrain. The return
stroke also maintains a constant velocity - usually larger than the power stroke velocity. The anterior
turnaround point is a fixed parameter. The posterior turnaround point varies, in response to signals (called
influences, in the literature) from other legs. This is the mechanism whereby one leg can shorten or
lengthen the time for a complete cycle, and therefore change its phase relationship with another leg.

In normal operation, the return velocity is fixed at a large value, and the power velocity is chosen to be
any value less than or equal to the return velocity. The ratio of the two velocities determines how many
legs, on average, will be in contact with the ground. A larger power velocity means fewer legs, on
average, in contact. Therefore, there is a tradeoff between speed and stability.

Inter-leg coordination is achieved by influences (as defined immediately above) between neighboring
legs. A neighbor is adjacent on the same side, or immediately opposite, as shown in Figure 10 below.

An influence extends, or retards, the posterior turnaround point of the receiving leg as a function of the
current position of the sending leg.

It is important to note what the stick insect controller does nor contain. It does not contain any single
centralized authority for timing. Individual legs participate in the controller as peers, and coordinated
motion emerges as a consequence of the peer-to-peer influences.

14

A detailed survey of the biological research that underlies the stick insect controller can be found in
[Crus95], and two other robotic implementations are described in [Miill92] and [Espe93].

11.3.3 Using the Stick Insect Controller on Ariel

This section discusses both the motivation for using the stick insect controller, and the obstacles to its use,
on Ariel. Unlike many laboratory robots, Ariel is tested in real world environments. It needed a
locomotion controller that would be robust against large perturbations, environmental change, and
potentially, even hardware failure. Insects manage to walk despite all these difficulties, so the biological
origins of the controller were encouraging.

The crab-like nature of Ariel’s locomotion is not an obstacle to using the stick insect controller. The
criteria for static stability are the same, regardless of direction of motion.

With only two degrees of freedom per leg, and with all axes of motion being parallel, it may not be
obvious how Ariel turns. Ariel turns the same way a tank (with treads) turns. Its turning motion is the
legged equivalent of skid steering. Ariel turns by lengthening the stroke at one end of the body, compared
to the other.

Ariel’s turning kinematics did present a potential obstacle to using the stick insect controller. There was
no published experience in modifying the stick insect controller in such a manner. Qur experimental
experience is described below

11.3.4 The Stick-Insect Controller as a Dynamic System

Simplified systems, and sub-systems

Leg as 1d relaxation oscillator

Theoretically, the stick insect controller is analyzed as a system of coupled oscillators. Each one-
dimensional oscillator represents one leg; the full system is six-dimensional. It is also useful to analyze
simpler systems, to isolate the behavior of subsystems, or to constrain the entire system to a subset of its
possible behaviors.

The one coordinate that describes the state of each oscillator (leg) is periodic. The end of the power
stroke is the beginning of the return stroke, and vice versa. One can visualize the leg coordinate as
chosen from the points on a circle. Some arc of the circle represents the power stroke and the remainder
the return stroke. A multidimensional phase space is assembled as the Cartesian product of individual
oscillator coordinates.

In these phase spaces, one can label regions as good or bad. In bad regions, two adjacent legs are on their
return stroke and the robot is mechanically unstable, as described above.

In the theoretical analysis, the types of questions that we ask concern these issues:

e Desirable Equilibrium — does the system perform repetitive motion on a trajectory that avoids
the bad parts of phase space?

¢ Local Controller Stability — does the system return to a desirable trajectory after being perturbed
away from it?

e Global Controller Stability — does the system approach the desirable trajectory from any starting
point?

e Information Loss Due to Distribution — since no leg has knowledge of the state of the entire
system, is there global information that could be used (e.g. for supervision) that is unavailable to
the controller?

15

We have found results for the following models.

Two-oscillator system, representing two legs adjacent on the same side of the body

There is a good, stable trajectory through the phase space where the rearward leg’s return stroke is closely
followed by the forward leg’s return stroke. This is a desirable relationship between the two legs; it forms
the basis of the metachronal wave, observed in most real insects. The trajectory is not globally stable —
there are starting points where the system passes through bad phase space for several cycles — but the
good trajectory does have a wide basin of attraction.

2) (1) Both legs in power stroke

3) (2) Rear leg in return, front leg
in power stroke

(3) Rear power, front return

a)/ (4) Both return (UNSTABLE)
C))

front leg position

4———— power stroke
return stroke ————®

<+—— power stroke
rear leg position

return stroke ———»

Figure 10: The 2-Leg Phase Space

In Figure 10, The 2-Leg Phase Space, each point in the square corresponds to a pair of positions. The
horizontal coordinate represents the front leg position. The vertical coordinate represents the rear leg
position. Recall that there is a single constant power stroke velocity for both legs, therefore when both
legs are in power stroke the trajectory (Example 1) will be 45° downward and to the left. When the return
stroke velocity is greater than the power stroke velocity, if the rear leg is in return stroke and the front leg
is in power stroke (Example 2) the trajectory slopes upward to the left at a steep angle.

Similarly, Example 3 depicts that when the front leg is in return stroke and the rear leg in power stroke,
the trajectory slopes downward to the right at a shallow angle. Finally, when both legs are returning at the
same time (Example 4) the trajectory is upward to the right at 45°.

16

“Influence 5” [Crus95] extends the rearward leg’s
turnaround point as a function of the forward leg’s
position

Figure 11: 2 Leg System with 1 Influence

The whole system has 6 legs, 14 influences. This case looks at a subsystem simplifying to 2 legs and 1
influence. The influence results in extending the position of the rear leg before it enters the return stroke.
Thus, the phase space is no longer square but rather has an extension representing the delayed return. The
fact that this extension happens only for the rear leg (as shown in Figure 12 is a result of the asymmetry
of this influence for same-side legs.

The influence modifies the rearward leg’s
turnaround point

Q
*
% g .
PO Blue: neutral trajectory
g ¢ without influence
g S ow Red: trajectory modified by
g & influence
E g
2
front leg position
<4——— power stroke
return stroke———%

Figure 12: 2-Leg System with Influence 5

The effect of the influence is to make the front leg cycle take slightly longer than the rear leg cycle,
therefore the phase relationship between the two legs slowly changes, e.g. of good trajectory moving
toward limit cycle.

17

rear leg position

front leg position

Figure 13: Limiting Behavior for Influence 5

In Figure 13, the stable trajectory under influence 5 has rear-leg return immediately followed by front-leg
return. The trajectory converges on a metachronal wave. The stable trajectory can be found rigorously by
return-map analysis, but the graphic sketch is roughly correct and quite convincing. In insects, the
metachronal wave is a wave of return strokes that moves forward up the body (e.g. it can be easily seen in
centipedes). The red trajectory is the limit cycle for a large fraction of the phase space, but not all.

Two-oscillator system, representing two legs directly opposite across the body

There is a good, stable trajectory where the two legs are 180° out of phase. Like the previous system, this
trajectory is almost, but not quite, globally stable.

Influence 1 Influence 5 - cross-body

Figure 14: Other results for 2 Leg Systems

In the same-side pair, influence 5 is insufficient to get out of a double-return (bad) trajectory. Influence 1,
which changes the rearward -leg’s turnaround, will get the system out of a bad trajectory for some, but
not all, regions of the phase space. In the cross-body pair, symmetric application of influence 5 has a
stable trajectory with the two legs 180° out of phase with each other. Note that for the same-side pair,
where the legs are not interchangeable, the influences have a front/back asymmetry, unlike the cross-body

pair.

Three-oscillator system: each oscillator represents a pair of legs, directly opposite across the

body
In this model, we represent all six legs, but assume that cross-body coupling is strong compared to same
side coupling. Members of the cross body pairs are assumed to be held 180° out of phase with their

18

opposite number, as predicted by the above result, and a single oscillator represents each pair. At low
velocities there is a good trajectory where the rearmost leg’s return stroke leads the middle leg’s return
stroke, which in turn leads the forward leg’s return stroke. This is the metachronal wave, as predicted
above. There is a bifurcation of the trajectory as the strength of the influence between oscillators grows,
eventually leading to mild excursions into the bad regions of phase space.

The same three-oscillator system is also the simplest model where there are non-neighboring legs

The return map for this system has been calculated. An important feature is that the map is the sum of the
corrections applied by each individual leg. One can prove that the return map of the system where end
legs have no knowledge of non-neighboring legs at the other end has a more restricted functional form
than that of the system with global knowledge.

Return-map analysis

To reduce the complexity of analyzing the system, we make use of return-map analysis. Instead of
dealing with the full, twelve-dimensional system, we simplify to a three-oscillator model. This allows a
more intuitive analysis and visualization of what is going on.

Loss of Information from Decentralization

The stick-insect controller, as described above, is composed of locally coupled sub-systems ie. the
individual legs communicate with their neighbors. How much information is present in the system, but
not available for control because the information is not localized at any one point? The following
mathematical model attempts to answer this question.

Another method of representing the phase space of a two-oscillator system (for example, from the above
figures) is as a 2-torus (a doughnut). This can be unfolded, as shown in Figure 15 below, to form a square.
In this representation, the power and return strokes are distinguishable because of position. In this case,
the bad region, that is, where the two legs are both in return, is a smaller, square region. With uniform
time spacing, this allows entire trajectories to be represented as straight lines parallel to the diagonal.
However, this has the disadvantage that motion beyond the usual turnaround is not represented.

Figure 15: Alternative Phase Space Representation:
Unfolded, Uniform Time Spacing for a Two-Oscillator
System

1omod

Consider a 3 degree-of-freedom system, corresponding to
the full 6 legged system, but with cross-body pairs of legs

/ locked 180° out of phase. We separate power and return

. strokes so that a different range of the coordinate for a leg

g denotes each one. To keep the geometric reasoning at its

3 / simplest, we chose the coordinate so that every coordinate
interval represents an equal amount of time.

retum power
Note that this configuration space is extremely simplified.
Because of the need to connect the end of the power stroke with the beginning of the return stroke, at a
single point, we cannot represent the variation of the posterior turnaround point as a part of a continuous
trajectory in the space. Instead, we pick a nominal turnaround point and model variation in the
turnaround point as a discontinuous jump in the trajectory.

With three cyclic coordinates, the full configuration space is a 3-torus. “Bad” regions of configuration
space, where two adjacent legs are in return stroke, form two intersecting square prisms across the space.

19

Figure 16 shows the 3-torus unfolded as a cube — in viewing this kind of illustration it pays to remember
that opposite faces of the cube are connected. In some cases, when illustrating the periodicity of the space
is important, we can place multiple copies of the cube side by side.

Bad regions in RED

Trajectories are
parallel to body
diagonal of cube

T3

An unperturbed good trajectory is very simple in this
space, as shown in the figure at right. It is a straight
line, parallel to the body diagonal of the cube. Note
that this picture supports the standard folklore on
legged controllers—the stick insect reactive controller
is better at slow motion than at fast motion. At slow
speeds, the hole between the bad regions is large, and
a wide range of unperturbed trajectories can avoid the
bad regions. At faster speeds, the hole narrows until,
at the tripod gait, it becomes a single point.

Figure 17: Good trajectory.

Now, let’s construct a perturbed trajectory. We model extension of the posterior turnaround by allowing
the other (not-turning) coordinates to increase, while the turning coordinate is held at the turnaround
point. When the turning leg passes back through the nominal turnaround point, we resume the normal
trajectory. The important point about the turnaround is that the non-turning coordinates continue to
increase uniformly, and therefore the piece of trajectory is parallel to a face-diagonal.

We will now construct the return-map for this system. Let the three coordinates be x, y, and z, with y
denoting the middle leg. Let the starting point of the trajectory be just before an x-turnaround, and let the
order of turnarounds be x followed by y followed by z. (We will see shortly that the order does not

matter.)

20

From a starting point (x, = 0,y,,z,), the coordinates after the x turnaround are:

X, =0
Y =Y, + X(y,)
7z, =7+ X(yo)

where X represents the delay introduced at the x turnaround; it is only a function of the y position,
because the x-leg is an end-leg with only the y-leg as a neighbor.

Propagating the trajectory across the space from x-boundary to y-boundary, the point before the y-
turnaround is:

X, =1=-y
y, =0
L= tl-y

while the y-turnaround, being the middle leg, depends both on x and z:
X3 = x2 + Y(xZ,Zz)

»3=y=0

z=2,+Y(x,2,)

Similarly, propagating the trajectory towards the z-boundary:
Ys=1-25

7 =0
performing the z-turnaround:
x,=x,+2(y,)

Vs =Y, + Z(y,)

L =4 = 0

and finally back towards the x-boundary:
x =0

Y =ys +1—x;

7 =1-x

yields the return-map:
Yo = Yo = X(3) ~ ¥(%,,¥,)

%= 2% = X0o) = Z(¥s)

Substituting for y,:

Yo = Yo = X(3,) = Y (x,,5,)

%= 2 = X(o)—Z(y, — 2y + Y(x,.y,))
and for x, and y, , using

x, = 1=y, + X(y)

y, =l=y,+z,

21

Software Implementation
In this section, we discuss the practical implementation of the stick-insect controller.

Linear Controller with Trajectory

The lowest level of software implements a linear feedback controller for each individual joint. Ariel’s
joints (6 hips and 6 knees) are each controlled by a standard linear position controller. The position
controllers run at 60Hz. The basic dataflow for one controller is shown below.

A 4 4
velocity controlle
T error
linear
trajectory | .ommand motor position
position reported out
PID controller
PWM calibration offset
limit switch 4
override ee
motor position in
limit switches PWM out
FarNet

Figure 18. The linear controller (one per joint — 12 total)

Each controller has:
¢ PID controller with integral decay;
sets of PID coefficients selectable from software e.g., compliance setting in different situations;

o
¢ simple trajectory (i.e., 1-D velocity);
¢ reporting of controller error for higher-level diagnostics.

Note that the PID feedback loop is closed over FarNet.
Leg Cycle

The individual leg cycle is composed of coordinated motions by hip and knee joints. A single bit of state
distinguishes power stroke form return stroke.

22

Siumy

The power stroke consists of a constant velocity trajectory by the knee joint, and a simple height-
correction by the hip joint. We would like the foot to remain at a constant vertical distance from Ariel’s
body as it sweeps horizontally. If 8 denotes the hip angle from horizontal, and ¢ the knee angle from
vertical, u the length of the upper leg, and I the length of the lower leg, then constant foot height is given
by:

usin@ =I(1 - cos¢).

If the hip is typically positioned near 0° while the knee swing is centered around 90°, then we can
approximate to second order in the angles. Canceling u and I, because Ariel’s upper and lower legs have
approximately the same length, we employ the following correction to hip height:

0 ~¢’
which is, obviously, cheap and efficient to implement.
The return stroke needs no correction in height. We do anticipate, however, the end of the return stroke

(the anterior turnaround point) and start the hip descending before the turnaround point is reached to
arrive at power stroke height at the end of the stroke.

hip angle 0
A
I'etllm _— L, L nNunsuENAmE,
power —— BSUNEERN RS AAANNONNNNORARA -lll...Il.Illlli':
posterior anterior
turnaround knee angle ¢ turnaround

Figure 19: The trajectory.

Influences

Each leg, executing a gait cycle as described above, makes available two pieces of information: a bit
describing whether it is in power or return stroke, and the fraction (between 0.0 and 1.0) of the stroke.
This information is transmitted to neighboring legs, where it forms the input to influence calculations.
(Note: this is unlike the biological model, where influence is “calculated” in the transmitting leg.)

23

Contro! from Upper Levels—Implementation on the mini68332

How does the stick insect controller fit in a larger robot control architecture? “Open loop” commands and
tuning parameters are simple. Recognition of global stability and fault intervention is harder.

start/stop
speed)

stable? jump to new
tu".l ___,|converging? [point in phase
radius space?
step
height

stick insect

controller

v @ iL
0¥ 4 o

ey
——xy,

Figure 20: Upper Level Control

The stick insect controller is really six loosely coupled controllers (one for each leg). The ease of
downward control and the difficulty of the other things follow because of this. Control parameters that
map directly onto parameters of individual leg motion (e.g. velocity) are easy to deal with. On the other
hand, control parameters that are combinations of more than one leg’s properties are not localized
anywhere (e.g. do we have a stable tripod of legs on the ground?).

Inversion Layer

Communicating directly across the mirror to the controllers on the rFlex processor, the purposes of the
inversion layer are to provide joint and leg abstractions (“objects”) on the miniboard side of the mirror;
and to present an Ariel that is always “right side up” to higher levels of software.

Since Ariel can walk and operate upside down, all operations such as walking, or even just standing, need
to work in both orientations. The inversion layer hides the detail of which way up Ariel currently is, and
allows higher-level software to be written in terms of the normal orientation only. By calibrating the joint
coordinates so that zero is horizontal (“straight out”), the transformation of coordinates is particularly
simple. If this layer detects a change in orientation, it re-issues most recent per-joint or per-leg command
as a low-level recovery procedure. This doesn’t prevent the implementation of higher-level behaviors in
response to inversion, but provides a simple robust lowest level. Inversion affects the following:

joint position and velocity — inversion negates positions and velocities

gait parameters — inversion negates turnaround points, and power and return heights.

compasses — inversion rotates the magnetic field and gravity vectors 180° around the local x-axis, and

interchanges the two compass’ readings;
walking controller — inversion reverses which direction is considered a positive rotational velocity.

24

Sensing of Ariel’s inversion status is done by a mercury switch mounted on the I/O board, and by the two
compass/inclinometers. A small behavior provides integration of these sensor inputs and low-pass
filtering for the mercury switch input (the mercury switch is more prone to triggering due to vibration
while walking).

Walking and Posture Supervision

The purpose of the walking supervisor on the mini68332 is to invoke and monitor the stick insect
controller on the Coldfire. The walking supervisor calculates stroke lengths and velocities for individual
legs. (When Ariel turns, not all legs have same gait parameters.)

Posture supervision informs the walker, and other behaviors, of appropriate leg-heights in order to
achieve some goal. With inclinometer input, the posture supervisor can chose a goal of keeping the body
approximately level. With input about local flow conditions, the posture supervisor could “lean into” the
flow to resist it.

Mission Component Behaviors

At the next level, just below the top level of control, are the behaviors that comprise the components of a
mission. They are:

search: a guided walk, servoing on direction;

calibrate: before the robot can do anything else, it must calibrate joint positions;

station keeping: triggered by detection of a mine, stop and raise a leg to indicate success.

Mission Arbiter

Ariel's missions are comprised of several sub-behaviors that are run either concurrently or sequentially,
depending on the action performed by the behavior. For instance, the behavior that causes the robot to
stand up is run once at the beginning of the mission and then only run again if the robot finds itself not
standing again later. The posture supervisor, however, is intended to run continually regardless of what
behavior is in control, advising all relevant behaviors about leg heights necessary to maintain a particular
posture. The latter type of behavior simply needs to be started at the beginning of a mission, but the
former behaviors need to be started and stopped carefully to avoid having more than one running at once
and competing for actuators. This mission monitor behavior is responsible for this.

The purpose of the mission arbiter is to let the user write a sequential plan of robot actions. The mission
monitor behavior is a state machine that takes a list of behavior names and runs through them in order
until it reaches the end, at which point the mission is declared successful. It knows the details of how to
activate each behavior, what signals to look for that indicate task completion (and whether the task was
successfully completed), ard how long to wait for that signal before declaring that something has gone
wrong and taking some other action. In the case of the mission displayed at the demo, if a behavior takes
too long to complete, the monitor simply sets a failure flag and stops the mission. It is also responsible
for selecting between behaviors given the completion status of another behavior. For instance, if the
search behavior is completed successfully, the mission monitor starts the station keeping behavior,
whereas a failed search simply signals mission failure and stops the robot.

1.4 Results

Il.4.1 Straight Line Motion

As described above, the stick insect controller was implemented on top of basic linear position controllers
for Ariel’s 12 joints. The individual gait cycle was shaped to give the foot straight-line motion during the
power stroke, for a smoother walk, but a natural arc, for simplicity, during the return stroke.

25

The strength of the inter-leg influences was tuned for maximum resistance to perturbations. While other
reports [Espe93] have claimed a wide range of acceptable parameters for emergence of a gait, we found
that the parameter range that yields a gait with the best resistance to perturbation is significantly narrower.

Ariel was tested walking on land, and underwater in surf conditions. The controller worked well at
varying speeds up to a tripod gait at approximately 30cm per second.

1 At full speed, there is some lateral lurch just before
60 Hz sampling of - the two leading corner feet touch .down: We
12 ioint positions speculate that this may be related to bifurcation in

jomtp "] the 3-oscillator system, but this has not been

6 foot forces 3 confirmed.
30 Hz sampling of]
inclinometer " Figure 21: Real world data: Leg Position for
] Straight Motion

LRSI, SO0, RSP PO, R, R, FRATE SO, . B S

I1.4.2 Turning Motion v

The basic controller was extended for turning by varying power stroke speed along the robot, and scaling
power stroke length proportionally so that time duration for a power stroke remained constant from leg to

leg.

Again, this was tested walking on land, and underwater in mild surf conditions. Ariel is able to perform
direction servoing using compass input and walk a search pattern composed of straight line passes. The
turning gait works well when the turning radius is large compared to the inter-leg distance, ie., with the
center of turning well outside the robot.

Turning with the stick insect controller does not work well when Ariel is called upon to turn in place, i.e.,
with the center of turning more or less under the robot. This is a consequence of an incompatibility
between the skidding nature of Ariel’s turning Kinematics, as described above, and the cross-body 180°
phasing that is the behavior of the stick insect controller.

We have implemented an alternate turning controller. This alternate controller executes a three-phase
cycle, where all four corner legs push simultaneously in one phase, and then two additional phases are
used to reposition the corner legs for another power stroke. During the main power stroke, the middle
two legs retract and play no part; they descend during the other two phases to stabilize the robot while the

corner legs return.

1.5 Conclusions

The stick insect controller is a functional piece of control software that originated in biological research.
It performs well on a robot deployed in a real world application. The simplicity of the original stick insect
controller was advantageous for the software engineering process. We have extended the stick insect
controller to the crab-like motion and skid-turning kinematics of the Ariel robot. The extension performs
well for large radius turns, but performance degrades as the radius of the turn gets smaller. A substitute
turning controller makes up for the limitations in small radius turning. The distributed nature of the stick
insect controller appears to incur some information loss, compared to a controller with centralized, global,
knowledge. Return-map analysis provides some insight into this information loss, and can be the basis
for supervisory control that uses this missing information. Alternatively, the return-map analysis may
form the intuitive basis for a more probabilistic method for supervisory control.

26

1.6 References

[Crus95] Cruse et al. “Walking: A Complex Behavior Controlled by Simple Networks.” Adaptive
Behavior Vol. 3, No 4, pp 385-418. 1995.

[Barn98] D. Barnes. “Hexapodal robot locomotion over uneven terrain.” Proceedings of the IEEE
Conference on Control Applications. Trieste, Italy. September 1998, pp 441-445.

[Espe93] Espenschied et al. 1993. “Leg Coordination Mechanisms in the Stick Insect Applied to
Hexapod Robot Locomotion.” Adaptive Behavior Vol. 1, No 4, pp 455-468.

[Isid95] A. Isidori. “Nonlinear Control Systems” Springer Verlag. 3" edition, 1995.

[Miill92] Miiller-Wilm et al. 1992. “Kinematic Model of a Stick Insect as an Example of a Six-
Legged Walking System.” Adaptive Behavior Vol. 1, No 2, pp 155-168.
[Yip89] Kenneth Man-kam Yip. KAM: Automatic Planning and Interpretation of Numerical

Experiments Using Geometrical Methods. MIT Al Technical Report 1163, August 1989.

27

Section Ill. CLIN 0004: Adding an Active Vision Head
to the M4 Robot

Figure 22. Macaco - M4/M2 Project. Rodney Brooks and Artur Arsenio. Primary Sponsor: Air
Force Aerospace Research — OSR. Secondary sponsor: iRobot (IS Robotics) contract number

F30602-96-C-0280.

lil.1 Introduction
This final report for CLIN 0004 is an extension and modification of the report previously submitted on
November 30, 2000. In particular, we have added sections for:

e Integration of the Macaco M4/M2 head with the body
e The new primate appearance for the Macaco head

e Stereo Vision mechanism to support navigation

This document reports research for the Macaco-M4 project — head and brain development for a mobile
robot in joint collaboration with the MIT Leg Lab. Macaco is a 7DOF small and light robotic head, with
four color CMOS cameras and one thermal camera. This head will be incorporated into a moving body.
The merging of social competencies with navigation capabilities requires an architecture that integrates
all the modules coherently, such that Macaco is given a personality demarcated by curiosity and a wish of
interacting with people, together with a strong instinct for safety.

28

One approach of Al is the development of robots whose embodiment and situatedness in the world evoke
behaviors that obviate constant human supervision. With this in mind, Macaco was designed for
navigation in unstructured environments. Thus, its vision system must comprise methods of assessing the
constantly changing terrain. Navigation for obstacle and potentially treacherous landscape avoidance,
slope detection, and gaze stabilization are all requisites for such competence. Furthermore, in order to be
a convincing social participant, the vision system must also allow for person detection and inference of
human gaze direction. All of these vision modules must also be accessible to each other and concurrent
with other sensor input from the rest of the body.

lll.2 Body/Head Integration

The design and construction processes of the M2/M4 Macaco head took into account severe restrictions
on weight, size both at the mechanical and hardware levels. These restrictions were taken into account so
that the body could support the integration of the head in latter stages.

In addition, the aesthetics of the head and the one of the body matches. Thus, the original design of a
dog’s like body inspired also a dog’s like head, so that both systems would integrate perfectly as an all.

Since one of the goals was the design of a head that could match both quadruped or bipedal bodies, the
design of the head was made flexible, and a small number of changes allowed a primate like look for the
head, in order to match the body of M2. The mechanics of the body allow the integration of the head, due

29

to its light weight, small size and easy connection at the base of the neck. Indeed, since both the body and
head are equipped with gyros (for different reasons: the gyros are used at the body for posture
stabilization, while at the neck they are used to support visual stabilization and ego-motion), the
integration of both systems does not require special hardware integration, besides a small bandwidth
communication channel from the head to the body to send information concerning terrain slopes,
direction to follow, and obstacles requiring a stop or stairs.

Thus, a serial link for communications and eight screws for fastening are all that it takes to connect both
systems.

.3 Hardware Architecture
After a detailed study of the computational requirements for such a system, the hardware was selected and
organized as shown in Figure 23.

e Three half-size (7.35in x 5.0in) HS6200 computer boards
o Initially was intended a PIII800MHz -speed had to be reduced to 600MHz

e Two PC104plus (3.6in x 3.6in - stackable) computer boards
o K6-2 400MHz

e All boards with Internet 10/100Mbits and VGA

Communication among the modules is implemented by a network of six Ethernet cards. Additional
Ethernet cards may be used for increased bandwidth.

This flexible network incorporates one server, which is connected to a notebook hard drive (removable),
while one of the clients, which is connected to an 112Mbytes DiskOnChip can also operate as server if

required.

The operating system running on all the processors is OS-QNX, selected because of high performance,
the possibility of portability for the existent software in our lab, and real time transparent v

communications.

30

~. iackplane
-~ J: ! Pentium 1T S800MHz
with VGA and shernet
Framegrabber

Pentium ITT SOOME:
with VGA and ehemet
Framegrabber

Al Lab node 1
Pontioen T 500MIIs Network with 20GB
with VGA and chemet hard drive
Framegrabber
node 2
PC104ptus modules in stack
K6-2 400MHz
with ethernet and VGA node3
Framegrabber
node 4
PC104plus modules in stack
K6-2 400MHz
with ethernet and VGA
2nd Ethernet card node 5
Py with 112M
3 eye controllers/s i 15k OnChij

Figure 23: M4/M2 Head Hardware Organization

I1.3.1 Design and Manufacturing

A robotic mechanism designed to act as an intelligent creature should explore the mechanisms that
evolution provided to these creatures and incorporate them in the design. Furthermore, some of the
constraints (such as limits on eye rotation) existent on such creatures also prove to be effective in
reducing processing complexity. Thus, the head was designed to resemble a biological creature,
exploiting several features of evolutionary design, but adding others (such as a thermal camera for human
detection and night vision) for improved performance.

In fact, the M4 head design resembles several biological creatures by replacing a small number of parts.
This was implemented due to the initial objective of designing a head for both M4 (a dog, which is a
quadruped) and M2 (a primate like biped). Thus, the final M2/M4 heads in one design resembled both a
dog and a primate.

31

A dog like design

Figure 25: M4 solid model.

32

A primate appearance

Figure 26: M2 (primate like head) design, with four parts replaced, and a stereolithography
artwork. Top: Chimpanzee face anatomy. Middle: Primate head skeleton (four parts replaced).
Down: Final primate design.

33

The Macaco/M4 head was manufactured in Aluminum and a small number of parts in Delrin. The head is
small, light, and includes inertial sensors, CMOS and thermal cameras, seven motors and equal number of
encoders. All the parts are referred on the following figure, and described next.

Small plastic insert above gyro :
glters ense for nose shaping Eye tilt motor and gears
yroscope 2 bearings at each joint
2 bearings for the eye for eye pan rotation
tilt rotation Miniature CMOS color
cameras
Eye pan motor
and gears
2 bearings for neck
roll rotation
Neck roll motor 2 bmgs fo; upper
and gears g 11cCk tilt rotation
Upper neck tilt
motor and gears
Neck pan motor Plastic ear
and gears
. 2 bearings for
Neck tilt motor neck pan rotation
and gears
Neck tilt
Necl; tilt h:aiing
bearing

Figure 27: M4/M2 Components.

e Head, motors & sensors:
e Weights ~3.7 Ibs

34

A trade-off between motors power and head weight is difficult to solve because actuator power available
is not continuous. The actuators selected consists of Maxon motors (6W and 20W) and MicroMo motors

(3.8Wand 1.4W.)

e Hardware:
~1.4 1bs each PIII board, ~0.7 Ibs each K6-2
~0.3 1bs each framegrabber, ~0.2 Ibs each motor controller/amplifier
~0.22 1bs 20GB notebook hard drive
1 small rack hand-made

e Power supply (computers and motors):
Together with video amplifiers, video to PC converter and Internet hub requires another rack,
which is removed upon integration with the body.

35

Four moving CMOS miniature color cameras
e 2 foveal: high resolution: 31° x 23° view, 8.0 mm lens
e 2 wide: low resolution: 110° x 83°view, 2.1 mm lens

No fixed cameras - egomotion will always be present anyway - moving creature!
CMOS technology better for dynamic scenes
Thermal camera for night navigation & people detection

Distance between the eyes ~3.5in
7 degrees of freedom
4 in the neck

3 for the eyes
Inertial sensor for VOR (only 3D in rotation).

36

%
r
i 11.4 Software Architecture

Focus on navigation and social interaction
The software architecture being developed consists mainly of thee macro structures: one reflexive,
automatic; another that requires dropping attention to certain events; and another that can select the events
to which attention will be dedicated and which takes the higher level decisions, such as choosing
directions, based on the internal state of the robot, the stimulus received and an embodied simulation of
possible events of actions. '

Bottom-up
Top-down

Visual attention mechanism

- — Inhibition
Pre-attentive Vision of return
Motion detection
Texture; i’ (image differences Tem.poral &.
Disoari segmentation ;o oving spatial filtering
isparity .
Feature regions) .
orientation/segmentation Color S.liency Signal
conditioning
e Activation ma
Vigilance... p
Vision with Attention
Dispalisty/depth Rouglrl terr Flow map
maps wolor (optical flow)
Obstacle Detect ent color
Feature/Texture
Eye/Gaze int i sl
detection Select integration ope
People interaction Navigation

How will the robot share the attention between multiple targets? Although several people may be detected
simultaneously, the Face Detection routine will require a decision by the system as to which person
should be selected. Furthermore, the vergence process will require decisions on each direction to look,
and the stabilization and control decisions on each kind of motion should be applied each time. Attention
to a certain kind of stimulus will be dictated also according to the state of the robot and the task being
performed. In fact, the robot will be looking constantly for salient stimulus that may be navigation related,
such as presence of obstacles, or for more general stimulus, such as movement, people or face detection.
Attention mechanisms are already implemented at our lab, [40]. An attention mechanism is being
developed to satisfy the functionality and necessities of a mobile platform.

37

e Motivation drives
e Curiosity
e Safety
e Social interaction

e Releasers from body sensors
s Jegs
e inertial sensors

Competing behaviors
e Plasticity

We are also trying to simulate the plasticity in the nervous system, which will increase the flexibility and
capabilities for learning and performing the desired tasks.
Modules implemented currently under M4 project:

® Feature orientation

® Motion detector

® | og polar transformation of the image input

Log-polar Transformation

Original Log-polar Reconstructed
Image Transformation Image

Motion Detection

e Disparity maps
(with Multi-scale resolution)

38

* Face detection: Oval models - looks for a partial ellipse based on edge gradients to detect a
variety of head orientations

e Control Oculo-Motor
Two versions, implementing VOR, saccades, smooth pursuit, vergence

i
[Left Monocular Tracking

Binocular Tracking \

Gorreinion Map >
} emplate Extraction

T

f:bﬁl’aﬁéﬁ?ﬁéﬂ

object template and "————|
jacquired frame | AI_.O—g-_pfal-ar‘ '--{
ransformation|

Position Estimation
(option: Kalman Filter}j

Smooth Pursuit Velocity Controller
30 Hz - high gains

Vergence Velocity Controlier

30 Hz - small gains

Figure 29: Smooth pursuit tested on Cog.

39

e Optical flow maps

¢ Sensory/Motor coordination and Stabilization

Figure 30: Approaching postures (curiosity behaviors - left), and object tracking (right).

e Stereo Vision for Navigation

Depth information is extracted from a scene using a binocular geometry. By matching correspondent
points in two calibrated cameras, one can obtain 3D information from the environment.

For calibration proposes, it was first used a linear calibration algorithm. After several experiments, it was
decided the use instead of a nonlinear calibration procedure, since the software for the latter is available

on-line from Intel OpenCV.

The first step of the stereo algorithm is to compute the epipolar lines, and then to rectify both images in
such a way that the epipolar lines become parallel, and thus the correspondence process is performed by
matching a line in the left image with the same line on the right image.

40

Feature-based methods such as dynamic programming require the extraction of contours. Several
techniques were compared: Sobel masks, gradient masks, and the Laplacian of a gaussian. The
performance of these edge detectors depend in great extent on the scenes and goals:

e Sobel masks produce double edges (although procedures are available to reduce the results to
single edges, but which increase computational efforts). Good when smoothing of the image is
desirable. This algorithm is fast, and gives both gradient and orientation information.

¢ Gradient masks: very fast, but gives poor results. Gradient masks are very sensitive to noise.

e Laplacian of the gaussian (also known as Marr-Hildreth edge detector): Gives the best
performance, but is computationally expensive, because requires the convolution of a 2D
gaussian with the entire image. The process was speed up by using an approximate method to
compute the convolution that reduces by a factor of 10 the computational effort.

Several matching methods were experimented:
e Correlation: produces dense maps, but it is computationally heavy.
¢ dynamic programming: the fastest algorithm, although matches were available only for a small
percentage of the image (the edge contours). It provides the best results.

41

Mﬂ e relaxation method: consists on using constraints to
guide the matching along several iterations. A
good compromise between correlation and

< 0
\J dynamic production, both in terms of speed and
! dense maps.

~ e techniques combining several methods: It consists
A= of using one method at a coarser level and then to

D refine using the same method or other method. No
significant improvements.

A linear algorithm for minimizing the square error was
applied for the determination of 3D information from a
W matching.

Stereo Vision and Navigation
Information concerning the location of world objects relative to the robot is important for navigation.
Indeed, from this information can be extracted the following:
= Slope of the terrain — combined with the gyros information, provides the body with a measure of
the slope of the terrain. Depending on this slope, another direction may be selected, or else a
different posture of the body may compensate the slope.
= Obstacles: Direction of movement is selected so that robot is guided to free areas.
= Soft terrain: Patterns on the 3D data can be used to extract information concerning features of the
terrain.
= Climbing stairs: additional processing will allow the identification of clusters of special patterns,

such like stairs

«U.S. GOVERNMENT PRINTING OFFICE: :p02-710-038-10197

42

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

